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Air pollution ™ 5012000 " (State of Global Air, 2019)

* is the fifth highest mortality risk factor globally and associated with about 4.9 million deaths (2017)
* reduced about 20 months of our life in average, with significant regional differences
* Developing countries: Increased emissions & stronger OPE - increasing risks

The in-situ observing network is clearly insufficient
for global health impact assessment (Fleming et al.,
2017; Seltzer et al., 2018 for US, Europe, and China)

The reqular surface ozone monitoring sites: . o e

® 16-20ppb

Roughly only 17% of the global population! . a2
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Chemical transport models Population, Mortality rate,
Concentration response

Chemical transport models provide global maps but suffer from systematic errors (Silva et al.,

2016; Malley et al., 2017, Zhang et al., 2018). Chang et al. (2019) combined multiple models
and TOAR observations, but it is still limited by the observing network
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Chemical transport models Population, Mortality rate,
Concentration response

Chemical transport models provide global maps but suffer from systematic errors (Silva et al.,
2016; Malley et al., 2017, Zhang et al., 2018). Chang et al. (2019) combined multiple models
and TOAR observations, but it is still limited by the observing network

New state-of-the-art chemical data assimilation systems can mitigate these limitations

by integrating various observational information with a model
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EnKF data assimilation to integrate a suite of measurements from multiple satellite sensors
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Chemical reanalyses provide useful information on exposure estimates and its attributions.
Nevertheless, systematic model errors must be quantified in order to assess their fidelity

Multi-mOdel Multi-cOnstituent CHEMical data assimilation (MOMO-Chem)

Multi-model
data assimilation

(EnKF x 4 CTMs)

Miyazaki et al., 2019, ACPD
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2005-2010

2010-2015

2015-2018

strong impacts on air
quality and human health
in developing countries
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Global total emissions:
Almost constant during 2005-2018 (49.3+2.7TgN)

Miyazaki et al.,
to be submitted
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Chemical reanalyses provide useful information on exposure estimates and its attributions

(mostly due to NOx emissions changes over polluted areas)



AMort =yo(1 — exp ™ P**)Pop.
HR = eXpBAY
Ax = if 03.GC <LCC

03_.GC—-LCC, ifO3_GC>LCC

* yo: baseline mortality rate (800/100,000)

* Pop: exposed population (GWP v4)

» B: effect estimate (from the hazard ratio: HR))
e HR: 1.12 (Turner et al., 2016)

e LCC: 33.3 ppb

2016
1,248 K

2005
1,002 K
Us 58 K 54 K

E China 256 K 280 K
India 286 K 399 K

Malley et al. (2017): 1.23M
This study: 1.25M

.
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Difference between 2016 and 2005 [%]
due to AX and Pop changes

-44 -36 -28 -20 -12 -4 4 12 20 28 36 44



Multi-model ﬁ

data assimilation : Emissions
(EnKF x 4 CTMs) I\!lulh-mgdel \l/
Multi-constituent GEOS-Chem LSS
- d | "
(Nﬁfﬂ:ftc%?:,:gs, AGCM-CHASER = cLT;gn:::onZ?E:.Z:g:s » uncertainty Concentrations
23 Y ) T - s ¥
MIROC-Chem-H 7 Health impacts
03 15N 55N 5oo 200hpa NOx emissions : India
_ 140F o — 085 (sonde) | = T ‘
_C>2 ,/ s\ — GEOS-Chem (@) ,/
Q 120}, N ~———— AGCM-CHASER - . 3
— y —— MIROC-Chem 4
2 MIROC-Chem-H )
o 100 3 2
S g NN : _—
80F Model: 4.1+8.6 w 1 = Assimilation msss Multi-model A
Assim:-1.5%2.1 % EERTY MOdEI = Mean/spread
N " " " " " N " " O .
123 456 7 8 9101112 1 2 3 456 7 8 9 1011 12
Month Month

* Harnessing the current observing system
provides sufficient constraints to greatly
reduce the influences of model errors and
to provide the consistent ozone analysis

* Possible uncertainty ranges in the a posteriori
emissions due to model errors: 13—31% for
industrialized areas and 4—21% for BB areas.
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Surface ozone
response to NOXx
emissions

The analysis increments
were used to quantify model
sensitivities related to
chemistry and transport

e TR > NH : Latitudinal shifts in NOx emissions would increases global ozone.

e The sensitivity of surface ozone to NOx emissions varied by a factor of 2 among models,
which would increase exposure estimate uncertainty.

e The observationally-constrained, multi-model integrated fields provide fundamentally
different fast chemical processes than those in the individual models.
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Unrealistic trends & large spreads among the models (2-10 ppb)
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Multi-model spreads are reduced to 1-5 ppb
—> up to 30 % mortality uncertainty
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Individual satellite measurements have provided an unparalleled source of global data
but suffer from limited surface sensitivity for many key species
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TES/OMI to infer global surface ozone
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~ GEO sounders will provide an unprecedented number of
composition observations at high resolution.

RN
TN AT '.’.l“ ',’
' |’|.|" I.I'J l’f[ 1 BN

< LEO sounders (IASI, CrlS, S5p) provide the global picture and - RN, S ; e
thread the GEO observations together. e e, SR, : )

Latitude

< Multispectral retrievals provide improved vertical sensitivity.




* While the most recent reanalysis products (e.g., TCR-2 & CAMS) agree well each
other, the discrepancy increased towards the surface due to differing chemical

model, assimilation approaches, and observing system.

* The sensitivity of surface ozone to NOx emissions varied by a factor of 2 among
models, which would increase the inter-reanalysis discrepancy and exposure
estimate uncertainty.

* The multi-constituent and multi-model data assimilation framework provides

observationally-constrained estimates of global air quality exposure (1.00M for
2005 and 1.25M for 2016) and its uncertainty (up to 30 %) for the past decade.

* Assimilating datasets from a new constellation of LEO sounders, GEO satellites,
and multispectral retrievals would further enhance the potential of chemical
reanalysis for observationally constrained global health impact assessment



